Shannon multiresolution analysis on the Heisenberg group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shannon Multiresolution Analysis on the Heisenberg Group *

We present a notion of frame multiresolution analysis on the Heisenberg group, abbreviated by FMRA, and study its properties. Using the irreducible representations of this group, we shall define a sinc-type function which is our starting point for obtaining the scaling function. Further, we shall give a concrete example of a wavelet FMRA on the Heisenberg group which is analogous to the Shannon...

متن کامل

Multiresolution analysis on the symmetric group

There is no generally accepted way to define wavelets on permutations. We address this issue by introducing the notion of coset based multiresolution analysis (CMRA) on the symmetric group, find the corresponding wavelet functions, and describe a fast wavelet transform for sparse signals. We discuss potential applications in ranking, sparse approximation, and multi-object tracking.

متن کامل

Supplement to “ Multiresolution analysis on the symmetric group ”

Representations. For the purposes of this paper a representation of G over C is a matrix-valued function ρ : G → Cdρ×dρ such that ρ(x)ρ(y) = ρ(xy) for any x, y ∈ G. We call dρ the order or the dimensionality of ρ. Note that ρ(e) = I for any representation. Two representations ρ1 and ρ2 of the same dimensionality d are said to be equivalent if for some invertible T ∈ Cd×d, ρ1(x) = Tρ2(x)T for an...

متن کامل

Riesz Potential on the Heisenberg Group

The relation between Riesz potential and heat kernel on the Heisenberg group is studied. Moreover , the Hardy-Littlewood-Sobolev inequality is established.

متن کامل

Inverse Radon Transforms on the Heisenberg Group

In this article, we introduce a kind of unitary operator U associated with the involution on the Heisenberg group, invariant closed subspaces are identified with the characterization spaces of sub-Laplacian operators. In the sense of vector-valued functions, we study the theory of continuous wavelet transform. Also, we obtain a new inversion formula of Radon transform on the Heisenberg group Hn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.07.035